Scalar additive operators: Typology and historical development

Volker Gast, Johan van der Auwera

Friedrich-Schiller-Universität Jena, Universiteit Antwerpen

ALT8, July 25, 2009
Introduction: Scalar additive operators

Luke 8, 25

(1) Who is this? He commands even the winds and the water, and they obey him.

(2) Quien es éste, que manda aun a los vientos y al agua, y le obedecen?

(3) Was ist das für ein Mensch, dass sogar die Winde und das Wasser ihm gehorchen?

(4) Voyez: il commande même aux vents et aux vagues, et il s’en fait obéir!
The additive inference of SAOs

- SAOs trigger an additive inference similar to that of (non-scalar) additive operators like *also*.

\[(5)\] He *even* danced with \([\text{MARY}]_F\).

\[(6)\] He *also* danced with \([\text{MARY}]_F\).

\[(7)\] Additive inference:
He danced with someone other than Mary (the focus).

The scalar inference of SAOs

- SAOs make reference to *scales*, i.e. ordered sets of alternatives.
- Alternative propositions stand in a paradigmatic relation to the proposition in question and differ from it only with respect to the focus.

\[(8) \text{ Even \{the winds\}_F obey him.}\]

\[(9) \{\text{The winds, His children, His dog}\} \text{ obey(s) him.} \quad \text{‘strength’}\]
Overview

1. Types of scalar additive operators (distributional restrictions)
2. A semantic map
3. Historical developments
Occurrence under negation

- Scalar additive operators are subject to different types of distributional restrictions.
- Occurrence under negation: E. *even* vs. G. *sogar/einmal*

(10) **Even** [the winds]$_F$ obey him.
(11) Not **even** [his dogs]$_F$ obey him.

(12) **Sogar/**einmal} die Winde gehorchen ihm.
 even the winds obey him.

(13) Nicht **sogar/einmal} sein Hund gehorcht ihm.
 not even his dog obeys him.
Occurrence in (non-)affirmative contexts

- Engl. *even* vs. Germ. *sogar/ auch nur* (‘also only’).

(14) If *even* [look at]$_F$ my wife], you’ll get into trouble.

(15) Wenn du sie {?sogar/ auch nur} [ansiehst]$_F$, if you her even look at, bekommt du Ärger! get you trouble ‘If you even look at her, you’ll get into trouble!’

(16) {Sogar/ *auch nur*} die Winde gehorchen ihm. even the winds obey him
The scalar additive operators of Italian

(17) **Perfino** i venti e le onde gli ubbidiscono.
even the winds and the waves him obey.
‘Even the winds and the waters obey him.’

(18) **Nemmeno** Salome fu vestito come uno di loro.
not even Solomon was dressed like one of these
‘Not even Solomon was dressed like one of these.’

(19) Se riesco **anche solo** toccare il suo vestito,
if I manage **even/so much as** touch the his frock,
sarò guarita.
I will be healed.
‘If I even touch his clothes, I will be healed.’
Distributional restrictions: A preliminary survey

Three types of contexts

<table>
<thead>
<tr>
<th></th>
<th>AFFIRMATIVE</th>
<th>NON-AFFIRMATIVE</th>
<th>NON-AFFIRMATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td></td>
<td>even</td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>sogar</td>
<td>einmal</td>
<td>auch nur</td>
</tr>
<tr>
<td>Italian</td>
<td>perfino</td>
<td>nemmeno</td>
<td>anche solo</td>
</tr>
</tbody>
</table>
Use of *auch nur* and *anche solo* under negation

(20) Nie habe ich **auch nur** einen Augenblick daran gedacht.
never have I even one instant of this thought
‘I’ve never thought of this for even a second.’

(21) Non ho mai pensato **anche solo** un instante a quello.
not I’ve never thought even an instant of this
‘I’ve never thought of this for even a second.’
Scalar and non-scalar uses of additive particles

Some additive particles are used with both scalar and non-scalar readings, e.g. Latin *et* and Ancient Greek *kai*.

(22) Fas est *et* ab hoste doceri.
right is also/even from enemy learn
‘It is rightful to learn even from an enemy.’

(23) Potapos estin houtos hoti *kai* hoi anemoi kai he who is this that also/even the winds and the thalassa auto: hypakouousin.
sea him they obey.
‘Who is this? Even the winds and the waters obey him.’
A semantic map

- non-scalar
- scalar affirmative
- scalar non-affirmative negative
- scalar non-affirmative non-negative

John also danced with Mary.

If you even look at her, you'll get into trouble.

Even the winds obey him.

Not even his dogs fare him.
A semantic map

John also danced with [Mary]_F

- non-scalar
- scalar affirmative
- scalar non-affirmative negative
- scalar non-affirmative non-negative
John also danced with [Mary]_F

Even [the winds] obey him.
A semantic map

John also danced with [Mary]_{F}

Not even [his dogs]_{F} *obey him.*

Even [the winds] *obey him.*
A semantic map

John also danced with [Mary]_F

Not even [his dogs]_F obey him.

Even [the winds] obey him.

If you even [look at]_F her, you’ll get into trouble.
A semantic map

Things to do:

1. Show that each node constitutes a category in its own right;
2. illustrate ‘contiguity requirement’: nodes covered by a given operator are contiguous;
3. consider the division of labour in particular systems of additive operators;
4. determine the parameters structuring the semantic map.
Specialized scalar additive operators

Additive operators that are specialized to one type of context

non-scalar
scalar affirmative
scalar non-affirmative negative
scalar non-affirmative non-negative
Specialized scalar additive operators

Additive operators that are specialized to one type of context

- non-scalar
- scalar
 - affirmative
 - non-affirmative
 - negative
 - non-negative

Engl. *also*
Specialized scalar additive operators

Additive operators that are specialized to one type of context

Engl. *also*
It. *perfino*

- non-scalar
- scalar affirmative
- scalar non-affirmative negative
- scalar non-affirmative non-negative
Specialized scalar additive operators

Additive operators that are specialized to one type of context

- Engl. *also*
- Lt. *perfino*
- Germ. *einmal*

- non-scalar
- scalar affirmative
- scalar non-affirmative negative
- scalar non-affirmative non-negative
Specialized scalar additive operators

Additive operators that are specialized to one type of context

- Engl. *also*
- Lt. *perfino*
- Germ. *einmal*
- Gr. *esto*
Greek *esto*

Esto may not be used in affirmative or negative (non-affirmative) clauses (cf. Giannakidou 2007).

(24) *I* Maria efaje *esto* to pagoto.
 DET Maria ate even DET ice cream
 int.: ‘Maria ate even the ice cream.’

(25) *I* Maria dhen efaje *esto* to pagoto.
 DET Maria not ate even DET ice cream
 int.: ‘Maria did not even eat the ice cream.’
Greek *esto*

- *Esto* is only used in (non-affirmative) non-negative clauses.

(26) [An diavasis *esto* ke mia selida ap’ afto to vivlio]
if you read even also one page of DEM DET book]
kati tha mathis.
something FUT you learn
‘If you read even a single page of that book, you will learn something.’
Operators covering nodes 1 and 2

Germ. *auch*

- non-scalar
- scalar affirmative
- scalar non-affirmative negative
- scalar non-affirmative non-negative
Germ. *auch*

- Scalar and non-scalar readings of *auch*

(27) **Auch** Karl kann das verstehen.
also/even Charles can that understand
‘Charles can understand that, too.’

(28) **Auch** der Dümmste kann das verstehen.
also the most stupid can that understand
‘Even the most stupid person can understand that.’
Operators covering nodes 2 and 3

Czech *dokonce*

- non-scalar
- scalar affirmative
- scalar non-affirmative negative
- scalar non-affirmative non-negative

dokonce
Under specific circumstances, Czech *dokonce* may occur in the scope of negation (cf. also BCS čak, Rom. nici).

(29) **Dokonce** [tady není ani voda k napítí].
 even there is not not even water PREP drink]
 ‘There is not even water to drink.’

(30) Není tady **[dokonce ani voda k napítí]**.
 is not there even not even water PREP drink]
 ‘There is not even water to drink.’
Operators covering nodes 1 to 3

Japanese -mo

- non-scalar
- scalar affirmative
- scalar non-affirmative negative
- scalar non-affirmative non-negative
Japanese -mo

Japanese -mo is used in three types of contexts (cf. Nakanishi 2006, 2008):

(31) Zidane-mo reddo caado-o morat-ta.
Zidane-also/even red card-ACC get-PST
‘Zidane also got a red card/Even Zidane got a red card.’

(32) John-wa Hon A-mo yom-ana-katta.
John-TOP Book A-even read-NEG-PST
‘John did not even read Book A.’
Operators covering nodes 2-4

Engl. even

- non-scalar
- scalar affirmative
- scalar non-affirmative negative
- scalar non-affirmative non-negative
Operators covering nodes 3-4

It. *anche solo*

- non-scalar
- scalar affirmative
- scalar non-affirmative negative
- scalar non-affirmative non-negative

anche solo
Operators covering nodes 1-4

Basque, *ere*

- **non-scalar**
- **scalar affirmative**
- **scalar non-affirmative negative**
- **scalar non-affirmative non-negative**
The distribution of Basque *ere*

(33) Gure ikasleak *ere*, joan dira.
 our students also/even go AUX
 ‘Our students, too, they went.’/‘Even our students went.’

(34) Ez da matrikulatu *ere* (egin).
 not AUX register even do
 ‘He didn’t even register.’

(35) Hitz bat *ere* egiten badu, akabatuko dut.
 word one even do.IMPF if.AUX kill.FUT AUX
 ‘If he says even one word, I’ll kill him.’
Systems of scalar additive operators

Czech

non-scalar

scalar affirmative

scalar non-affirmative negative

scalar non-affirmative non-negative
Systems of scalar additive operators

Czech

- také
- dokonce
- ani
- i jen
Systems of scalar additive operators

Tetelcingo Nahuatl

- **nuyihki**
- **asta**
- **mecs sa**

<table>
<thead>
<tr>
<th>non-scalar</th>
<th>scalar affirmative</th>
<th>scalar non-affirmative non-negative</th>
<th>scalar non-affirmative</th>
</tr>
</thead>
</table>

Volker Gast, Johan van der Auwera
Systems of scalar additive operators

Japanese

- \textit{-mo}

- \textit{-demo}

non-scalar

scalar affirmative

scalar non-affirmative negative

scalar non-affirmative non-negative

- \textit{-dake-demo}
Principles underlying the semantic map

- Question: Why does the semantic map look the way it does?
- Observation: Negative assertive contexts are closer to affirmative contexts than non-assertive ones.

```
<table>
<thead>
<tr>
<th>scalar</th>
<th>scalar</th>
<th>scalar</th>
</tr>
</thead>
<tbody>
<tr>
<td>affirmative</td>
<td>non-affirmative</td>
<td>non-affirmative</td>
</tr>
<tr>
<td>negative</td>
<td>non-negative</td>
<td>negative</td>
</tr>
<tr>
<td>affirmative</td>
<td>non-negative</td>
<td>negative</td>
</tr>
</tbody>
</table>
```

Volker Gast, Johan van der Auwera
Scalar additive operators
Principles underlying the semantic map

- Question: Why does the semantic map look the way it does?
- Observation: Negative assertive contexts are closer to affirmative contexts than non-assertive ones.
Context features

- The strength of a proposition is a function of
 1. the **focus value**, and
 2. the (external) **context**.

- A ‘canonical’ context:

 (36)
 a. Did Bill Clinton talk to your wife?
 b. He even [kissed] \(F \) her!

 (37)
 He \((\text{even}) \left\{ \text{kissed} \right\} \text{talked to} \) my wife. \(\uparrow \)
Scale reversal

- Under specific circumstances, a **weaker** focus value (e.g. *talk to*) yields a **stronger** proposition.
- **Scale reversal** (cf. Fauconnier 1985, König 1991, Haspelmath 1997, etc.); e.g. under negation, in conditionals.

(38) a. May I kiss you wife?
 b. You may not even [talk to]$_F$ her!

(39) You may not
 \[
 \begin{cases}
 \text{even} & \text{talk to} \\
 \#\text{even} & \text{kiss}
 \end{cases}
 \]
 my wife.

(40) If you
 \[
 \begin{cases}
 \text{even} & \text{talk to} \\
 \#\text{even} & \text{kiss}
 \end{cases}
 \]
 my wife, I’ll kill you.
Three levels of ‘strength’

- Strength of the **co-constituent**.
- Strength of the **minimal clause** containing the SAO.
- Strength of the entire **sentence**.

<table>
<thead>
<tr>
<th></th>
<th>sentence</th>
<th>clause</th>
<th>co-constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>aff.</td>
<td>[]</td>
<td>He EVEN</td>
<td>[kissed her]</td>
</tr>
<tr>
<td>non-aff. neg.</td>
<td>[]</td>
<td>You may not EVEN</td>
<td>[talk to her]</td>
</tr>
<tr>
<td>non-aff. non-neg.</td>
<td>[If]</td>
<td>you EVEN</td>
<td>[talk to her]</td>
</tr>
</tbody>
</table>
Three levels of ‘strength’

- Strength of the **co-constituent**.
- Strength of the **minimal clause** containing the SAO.
- Strength of the entire **sentence**.

<table>
<thead>
<tr>
<th></th>
<th>sentence</th>
<th>clause</th>
<th>co-constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>aff.</td>
<td>[]</td>
<td>[He EVEN]</td>
<td>[kissed her]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-aff.</td>
<td>[]</td>
<td>[You may not EVEN]</td>
<td>[talk to her]</td>
</tr>
<tr>
<td>neg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-aff.</td>
<td>[If]</td>
<td>[you EVEN]</td>
<td>[talk to her]</td>
</tr>
<tr>
<td>non-neg.</td>
<td></td>
<td></td>
<td>I’ll kill you</td>
</tr>
</tbody>
</table>
Three levels of ‘strength’

- Strength of the **co-constituent**.
- Strength of the **minimal clause** containing the SAO.
- Strength of the entire **sentence**.

<table>
<thead>
<tr>
<th>Strength</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>aff.</td>
<td>[He EVEN [kissed her]]</td>
</tr>
<tr>
<td>non-aff. neg.</td>
<td>[You may not EVEN [talk to her]]</td>
</tr>
<tr>
<td>non-aff. non-neg.</td>
<td>[If EVEN [you talk to her]] I’ll kill you]</td>
</tr>
</tbody>
</table>
Three levels of ‘strength’

- Strength of the **co-constituent**.
- Strength of the **minimal clause** containing the SAO.
- Strength of the entire **sentence**.

<table>
<thead>
<tr>
<th></th>
<th>sentence</th>
<th>clause</th>
<th>co-constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>aff.</td>
<td>[</td>
<td>[</td>
<td>[</td>
</tr>
<tr>
<td></td>
<td></td>
<td>He</td>
<td>EVEN [</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[</td>
<td>[kissed her]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[</td>
<td>]</td>
</tr>
<tr>
<td>non-aff. neg.</td>
<td>[</td>
<td>[</td>
<td>[</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You may not</td>
<td>EVEN [</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[</td>
<td>[talk to her]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[</td>
<td>]</td>
</tr>
<tr>
<td>non-aff. non-neg.</td>
<td>[</td>
<td>[</td>
<td>[</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If</td>
<td>EVEN [</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[</td>
<td>[you] [talk to her]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[</td>
<td>I’ll kill you]</td>
</tr>
</tbody>
</table>

Scalar additive operators
Three levels of ‘strength’

- Strength of the co-constituent.
- Strength of the minimal clause containing the SAO.
- Strength of the entire sentence.

<table>
<thead>
<tr>
<th></th>
<th>sentence</th>
<th>clause</th>
<th>co-constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>aff.</td>
<td>[]</td>
<td>[He EVEN] [kissed her]</td>
<td>]</td>
</tr>
<tr>
<td>non-aff. neg.</td>
<td>[]</td>
<td>[You may not EVEN] [talk to her]</td>
<td>]</td>
</tr>
<tr>
<td>non-aff. non-neg.</td>
<td>[If]</td>
<td>[you EVEN] [talk to her]</td>
<td>I’ll kill you]</td>
</tr>
</tbody>
</table>
Three levels of ‘strength’

- **Strength of the co-constituent**.
- **Strength of the minimal clause** containing the SAO.
- **Strength of the entire sentence**.

<table>
<thead>
<tr>
<th>Aff.</th>
<th>[]</th>
<th>[]</th>
<th>He EVEN</th>
<th>[kissed her]</th>
<th>]</th>
<th>]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-aff. neg.</td>
<td>[]</td>
<td>[]</td>
<td>You may not EVEN</td>
<td>[talk to her]</td>
<td>]</td>
<td>]</td>
</tr>
<tr>
<td>Non-aff. non-neg.</td>
<td>[If</td>
<td>[</td>
<td>you EVEN</td>
<td>[talk to her]</td>
<td>]</td>
<td>I’ll kill you]</td>
</tr>
</tbody>
</table>
Three levels of ‘strength’

- Strength of the **co-constituent**.
- Strength of the **minimal clause** containing the SAO.
- Strength of the entire **sentence**.

<table>
<thead>
<tr>
<th></th>
<th>sentence</th>
<th>clause</th>
<th>co-constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>aff.</td>
<td>[]</td>
<td>[He EVEN</td>
<td>[kissed her]]</td>
</tr>
<tr>
<td>non-aff.</td>
<td>[]</td>
<td>[You may not EVEN</td>
<td>[talk to her]]</td>
</tr>
<tr>
<td>neg.</td>
<td>[]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>non-aff.</td>
<td>[If]</td>
<td>[you EVEN</td>
<td>[talk to her]]</td>
</tr>
</tbody>
</table>
Three levels of ‘strength’

- Strength of the **co-constituent**.
- Strength of the **minimal clause** containing the SAO.
- Strength of the entire **sentence**.

<table>
<thead>
<tr>
<th></th>
<th>sentence</th>
<th>clause</th>
<th>co-constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>aff.</td>
<td>[]</td>
<td>[He EVEN]</td>
<td>]</td>
</tr>
<tr>
<td>non-aff.</td>
<td>[]</td>
<td>[You may not EVEN]</td>
<td>[talk to her]</td>
</tr>
<tr>
<td>neg.</td>
<td>[]</td>
<td>[]</td>
<td>]</td>
</tr>
<tr>
<td>non-aff.</td>
<td>[If]</td>
<td>[you EVEN]</td>
<td>[talk to her]</td>
</tr>
<tr>
<td>non-neg.</td>
<td>[]</td>
<td>[]</td>
<td>]</td>
</tr>
</tbody>
</table>

Volker Gast, Johan van der Auwera

Scalar additive operators
Three levels of ‘strength’

- Strength of the **co-constituent**.
- Strength of the **minimal clause** containing the SAO.
- Strength of the entire **sentence**.

<table>
<thead>
<tr>
<th></th>
<th>sentence</th>
<th>clause</th>
<th>co-constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>aff.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[He EVEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-aff. neg.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[You may not EVEN [talk to her]]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-aff. non-neg.</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[If you EVEN [talk to her]] [I’ll kill you]</td>
</tr>
</tbody>
</table>

Example sentences:
- He even kissed her
- You may not even talk to her
- If you even talk to her, I’ll kill you
Three levels of ‘strength’

- Strength of the **co-constituent**.
- Strength of the **minimal clause** containing the SAO.
- Strength of the entire **sentence**.

<table>
<thead>
<tr>
<th></th>
<th>sentence</th>
<th>clause</th>
<th>co-constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>aff.</td>
<td>[</td>
<td>He EVEN</td>
<td>]</td>
</tr>
<tr>
<td>non-aff.</td>
<td>[</td>
<td>You may not EVEN</td>
<td>]</td>
</tr>
<tr>
<td>neg.</td>
<td>[</td>
<td>]</td>
<td>]</td>
</tr>
<tr>
<td>non-aff.</td>
<td>[</td>
<td>If</td>
<td>you EVEN</td>
</tr>
<tr>
<td>non-neg.</td>
<td>[</td>
<td>]</td>
<td>]</td>
</tr>
</tbody>
</table>
Context features

- Strength of co-constituent, minimal clause, sentence

<table>
<thead>
<tr>
<th></th>
<th>sentence</th>
<th>clause</th>
<th>co-constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>affirmative</td>
<td>strong</td>
<td>strong</td>
<td>strong</td>
</tr>
<tr>
<td>non-affirmative/negative</td>
<td>strong</td>
<td>strong</td>
<td>weak</td>
</tr>
<tr>
<td>non-affirmative/non-negative</td>
<td>strong</td>
<td>weak</td>
<td>weak</td>
</tr>
</tbody>
</table>
Context features

affirmative

\[\begin{array}{c}
\text{SENTENCE} & S \\
\text{CLAUSE} & S \\
\text{CO-CONST.} & S \\
\end{array}\]

non-affirmative

\[\begin{array}{c}
\text{SENTENCE} & S \\
\text{CLAUSE} & S \\
\text{CO-CONST.} & W \\
\end{array}\]

non-affirmative

\[\begin{array}{c}
\text{SENTENCE} & S \\
\text{CLAUSE} & W \\
\text{CO-CONST.} & W \\
\end{array}\]
Context features

- Sentence (S)
- Clause (S)
- CO-CONST. (S)
- Sentence (S)
- Clause (S)
- CO-CONST. (W)
- Sentence (S)
- Clause (S)
- CO-CONST. (W)
Historical developments

- Ultimately, the answer to the question of why the semantic map looks the way it does is a diachronic one.
- “[T]he best semantic map is a diachronic one” (van der Auwera 2008: 43).
- Semantic maps reflect possible and impossible (or likely and unlikely) pathways of historical change.
Historical developments

Scalar additive operators
Historical developments

'Sentence' 'Identity'

`even_1`
Historical developments

- ‘endpoint’
- ‘identity’

- SENTENCE S
- CLAUSE S
- CO-CONST. S

- SENTENCE S
- CLAUSE S
- CO-CONST. W

- SENTENCE S
- CLAUSE W
- CO-CONST. W

Volker Gast, Johan van der Auwera
Scalar additive operators
Historical developments

'Sentence'

'S Clause'

'S Co-const.'

Even 1

Even 2

Even 3

'Sentence'

'S Clause'

'S Co-const.'

'Sentence'

'S Clause'

'W Co-const.'

'Sentence'

'S Clause'

'W Co-const.'

'Stabilized. Distributional restrictions

A semantic map

Context parameters

Literature
Historical developments

'Sentence' 'Clause' 'Co-const.' 'endpoint'
'Sentence' 'Clause' 'Co-const.' 'identity'
'Sentence' 'Clause' 'Co-const.' 'scope extension'

Volker Gast, Johan van der Auwera
Scalar additive operators
Historical developments

- ‘endpoint’
- ‘minimal quantity’
- ‘identity’
- emphatic negation

\begin{align*}
\text{SENTENCE} & \quad S \\
\text{CLAUSE} & \quad S \\
\text{CO-CONST.} & \quad S \\
\text{even}_1 & \\
\text{SENTENCE} & \quad S \\
\text{CLAUSE} & \quad S \\
\text{CO-CONST.} & \quad W \\
\text{einmal} & \\
\text{SENTENCE} & \quad S \\
\text{CLAUSE} & \quad W \\
\text{CO-CONST.} & \quad W
\end{align*}

\textbf{Scalar additive operators}
Historical developments

- ‘endpoint’
- ‘identity’
- ‘minimal quantity’
- ‘co-const.’

- ‘scope extension’
- ‘restrictive operator’
- ‘expression of comparison’
- ‘emphatic negation’
- ‘concessive conditional’

even$_1$, *S*
even$_2$, *S*
even$_3$, *S*
einmal, *S*
kan$_1$, *W*
Historical developments

- 'endpoint'
- 'identity'
- 'minimal quantity'

- 'semantic generalization'
- 'minimal quantity'
- 'restrictive operator'
- 'expression of comparison'
- 'concessive conditional'

- even\(_1\)
- even\(_2\)
- even\(_3\)
- scope extension
- kan\(_1\)
- kan\(_2\)
Historical developments

- 'endpoint'
- 'identity'
- 'minimal quantity'
- emphatic negation
- restrictive operator
- expression of comparison
- concessive conditional
- semantic generalization
- scope extension

Volker Gast, Johan van der Auwera
Scalar additive operators
Literature